The Highest Resolution Photos Ever Taken of Snowflakes

Photographer and scientist Nathan Myhrvold has developed a camera that captures snowflakes at a microscopic level never seen before. Smithsonian Magazine reports: Myhrvold, who holds a PhD in theoretical mathematics and physics from Princeton University and served as the Chief Technology Officer at Microsoft for 14 years, leaned on his background as a scientist to create the camera. He also tapped into his experience as a photographer, most notably as the founder of Modernist Cuisine, a food innovation lab known for its high-resolution photographs of various food stuffs published into a five-volume book of photography of the same name that focuses on the art and science of cooking. Myhrvold first got the idea to photograph snowflakes 15 years ago after meeting Kenneth Libbrecht, a California Institute of Technology professor who happened to be studying the physics of snowflakes.

In simple terms, the system Myhrvold developed is comprised of one part microscope and one part camera, but with a number of parts that work in tandem to complete the arduous task of capturing an image of a snowflake, a subject that’s not only miniscule (most snowflakes measure less than a half-inch in diameter) but also quick to melt. In fact, a snowflake’s tendency to disintegrate was one of the biggest challenges Myhrvold had to overcome with this project. His solution: equipping his 50-pound camera system with a thermoelectric cooling system, a carbon fiber frame and LED lights, which give off less heat than standard lights. Every single part of his Frankenstein-esque device, which stands at about five feet in height off the ground when placed on a table, was built using materials that are less likely to cause melting or sublimation of the subject matter.

Myhrvold also had to figure out how to physically capture a snowflake. (It’s not quite as simple as hoping that the perfect snowflake just so happens to fall into your mittened hand.) He quickly learned that catching them on a glass microscope slide wouldn’t work; glass is a known insulator. But an artificial sapphire slide, made of the same crystal material as one would find in a high-end watch, had a lower thermal conductivity ratio than glass, making it the perfect material to gather specimens. […] Once safely on the slide, he focuses his microscope to take the photograph, changing the exposure one micron at a time. (For reference, the width of a human hair measures approximately 70 microns.) On average, Myhrvold photographs each snowflake more than 100 times, or as many times as he can before the snowflake starts to melt. Using specialized computer software, Myhrvold combines multiple photographs of a single specimen to create the final photograph. “That photo [is usually the result of] 100 photographs put together using computer software,” he says. “You have to take many photos in order to get a high enough resolution, because many photos put together allows you to have enough depth of field to see an entire snowflake very sharply.” Via – Slashdot

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s